Stochastic thermodynamics, fluctuation theorems and molecular machines.
نویسنده
چکیده
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
منابع مشابه
Fluctuation theorem, nonequilibrium work, and molecular machines
We could paraphrase Professor Noyori [1] and say that the science of molecular machines is four-dimensional chemistry since their 3D structure (x, y, z) is coupled to their motion and kinetics (t). In condensed phases at equilibrium, the motion is erratic with equal probabilities of moving forward or backward according to the principle of detailed balance. Therefore, unidirectional motion is po...
متن کاملTotal entropy production fluctuation theorems in a nonequilibrium time-periodic steady state
We investigate the total entropy production of a Brownian particle in a driven bistable system. This system exhibits the phenomenon of stochastic resonance. We show that in the time-periodic steady state, the probability density function for the total entropy production satisfies Seifert’s integral and detailed fluctuation theorems over finite time trajectories. PACS. 05.40.-a Fluctuation pheno...
متن کاملNonequilibrium Thermodynamics Modeling of Coupled Biochemical Cycles in Living Cells
Living cells represent open, nonequilibrium, self organizing, and dissipative systems maintained with the continuous supply of outside and inside material, energy, and information flows. The energy in the form of adenosine triphosphate is utilized in biochemical cycles, transport processes, protein synthesis, reproduction, and performing other biological work. The processes in molecular and cel...
متن کاملStochastic thermodynamics: Principles and perspectives
Stochastic thermodynamics provides a framework for describing small systems like colloids or biomolecules driven out of equilibrium but still in contact with a heat bath. Both, a first-law like energy balance involving exchanged heat and entropy production entering refinements of the second law can consistently be defined along single stochastic trajectories. Various exact relations involving t...
متن کاملAn optical trap experiment to demonstrate Fluctuation Theorems in viscoelastic media
Abstract Conventional 19th century thermodynamics has limited our understanding of statistical physics to systems in the thermodynamic limit, and at or near-equilibrium. However, in the last decade two new theorems, collectively referred to as Fluctuation Theorems or FTs, were introduced that quantify the energy distributions of small systems that are driven out of equilibrium, possibly far-fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports on progress in physics. Physical Society
دوره 75 12 شماره
صفحات -
تاریخ انتشار 2012